NOVEMBER 2012

TRAFFIC IMPACT STUDY FOR THE

HARVEST – TULARE ANAEROBIC DIGESTER AND COMPRESSED NATURAL GAS FACILITY

PREPARED BY

consulting

Traffic Impact Study for the Harvest-Tulare Anaerobic Digester & Compressed Natural Gas Facility *Tulare County, California*

<u>TABLE OF CONTENTS</u> <u>PAGE</u>
CHAPTER 1 – INTRODUCTION
CHAPTER 2 – EXISTING CONDITIONS7Table 1: Description Of Existing Street System7Table 2: Existing Intersection Control7Table 3: Existing Conditions Analysis Levels Of Service8Figure 3: Existing Lane Configurations9Figure 4: Existing Peak Hour Traffic Volumes10
CHAPTER 3 – Project Information
CHAPTER 4 – Existing Conditions Plus the HArvest-Tulare Project Traffic Table 4: Existing Conditions PLUS Project Levels Of Service
CHAPTER 5 – 2035 CONDITIONS WITHOUT THE PROJECT
CHAPTER 6 – 2035 CONDITONS PLUS THE PROJECT
CHAPTER 7 – CONCLUSIONS
 <u>Appendix A</u> Existing Conditions Intersection Levels of Service Calculations <u>Appendix B</u> Existing Plus Project Conditions Intersection Levels of Service Calculations <u>Appendix C</u> TCAG Traffic Model Plot <u>Appendix D</u> 2035 Without Project Conditions Intersection Levels of Service Calculations <u>Appendix E</u> 2035 Plus the Project Conditions Intersection Levels of Service Calculations

consulting

TRAFFIC IMPACT STUDY

FOR THE

HARVEST-TULARE ANAEROBIC DIGESTER AND COMPRESSED NATURAL GAS FACILITY

CHAPTER 1 – INTRODUCTION

This Traffic Impact Study (TIS) was prepared to assess the traffic impacts due to the proposed Harvest-Tulare Anaerobic Digester and Compressed Natural Gas Facility Project located in Tulare County. The approximate 35 acre proposed Project site is located south of Avenue 245. Road 140 is located approximately one quarter mile to the east of the site, while Avenues 240 and 248 are approximately one half mile to the south and north of the site, respectively.

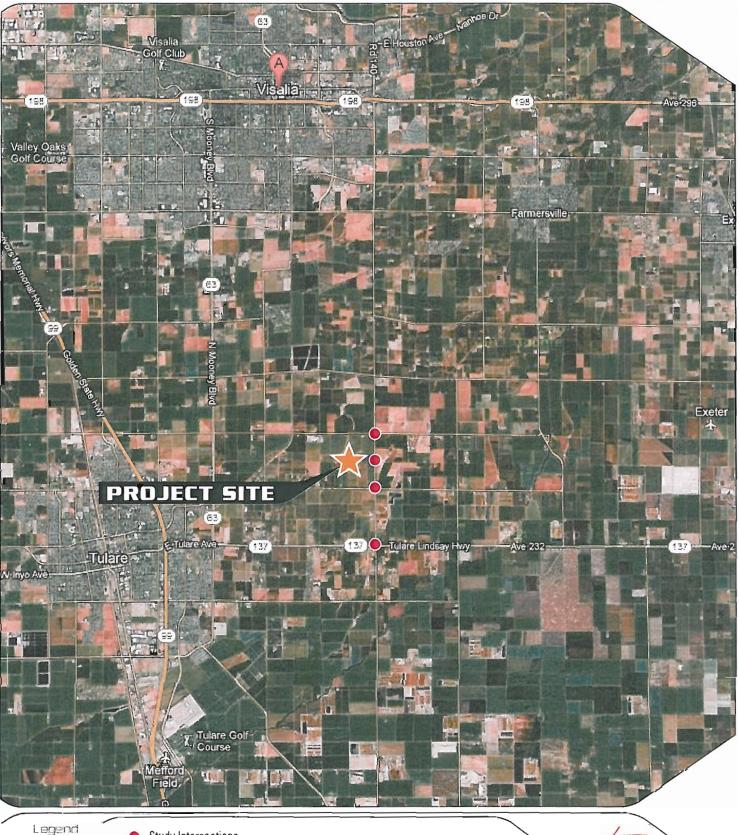
The City of Tulare is approximately four (4) miles to the southwest of the site and the City of Visalia is located approximately 5 miles to the northwest of the proposed site. This study evaluates the impacts of the proposed development on adjacent intersection operations and provides an assessment of the Project driveway. Figure 1 shows the Project location.

The Project study area for the analysis of traffic impacts falls along Lovers lane and includes four (4) intersections for two (2) time periods (weekday AM and PM peak hours). Intersection levels of service

(LOS) were calculated using <u>Synchro 7.0</u> and <u>HCS</u> software, which are an industry standards and is recognized for use in the County of Tulare. The <u>Synchro 7.0</u> and <u>HCS</u> software are based on the <u>2010</u> <u>Highway Capacity Manual (HCM 2000)</u> methodology, which is also an industry standard. The analysis methodology used in this report is included in Appendix A.

To analyze the traffic impacts resulting from the build out of the Harvest-Tulare Anaerobic Digester and Compressed Natural Gas Facility Project, the following four (4) scenarios were evaluated:

- Existing Traffic Conditions (2012)
- Existing Conditions Plus the Compost Project Traffic
- 2035 Conditions Without the Compost Project Traffic
- 2035 Conditions Plus the Compost Project Traffic

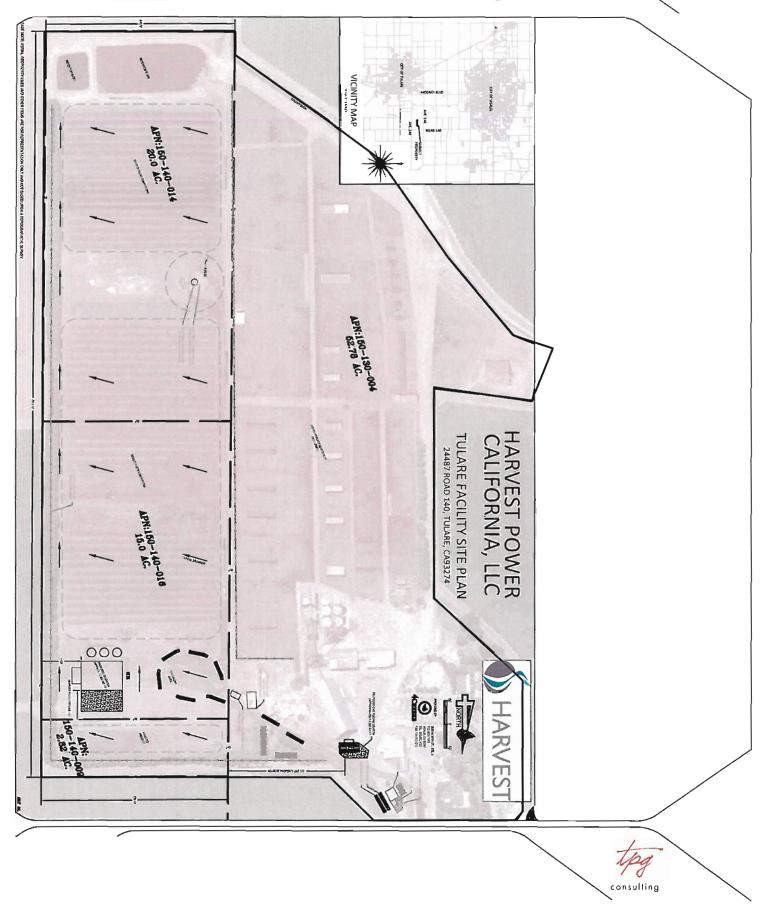

Harvest-Idan: Anaerdai Jupsue and Coopressed Nature, Lee, Faolity

L. Chi Ampact Study

Figure 1

0 consulting

Vicinity Map


Legend

Study Intersections

Figure 2

Inoffic Import Study

Project Site Plan

Methodology

This Traffic Impact Study was prepared following a traditional methodology. In order to prepare a traffic evaluation, a variety of data and technical assumptions had to be developed. This section of the report describes the various sources, data and technical assumptions used in this evaluation.

Sources

This report was prepared using information taken from the following sources:

- 2010 Highway Capacity Manual (HCM 2010), Transportation Research Board, 2010.
- 2002 Ouality/Level of Service Handbook, Florida Department of Transportation, 2002.
- <u>Guide for the Preparation of Traffic Impact Studies</u>, State of California Department of Transportation, December, 2002.
- <u>Synchro 7.0</u>, Trafficware, 2007.
- <u>Traffic Impact Analysis for Site Development</u>, A Recommended Practice, ITE, Transportation Planners Council Task Force on Traffic Access/Impact Studies, 2006.
- <u>*Trip Generation*</u>, 8th Edition, Volume 2, ITE, 2008.
- <u>Trip Generation</u> (software), Version 6, Microtrans, 2008.

<u>Scenarios</u>

The scenarios that were analyzed for this study included:

- Existing Traffic Conditions
- Existing Plus the Project Traffic Conditions
- 2035 WITHOUT the Project Traffic Conditions
- 2035 WITH the Project Traffic Conditions

The 2035 WITHOUT the Project and 2035 WITH the Project scenarios reflect cumulative conditions analysis as required by CEQA.

Study Locations

The following intersections were analyzed:

- 1. Lovers Lane at SR 137
- 2. Lovers Lane at Avenue 240
- 3. Lovers Lane at Project Driveway
- 4. Lovers Lane at Avenue 248

Analysis Time Periods

According to <u>Traffic Impact Analyses for Site Development</u>, the overall purpose of a traffic impact study is to determine the project impacts that are likely to occur to the surrounding street system. In order to accomplish this purpose you need to determine what occurs when the peak of the project generated traffic overlays the peak of the street traffic. <u>Traffic Impact Analyses for Site Development</u> states "the peak periods [of the adjacent street and highway system] are generally the weekday morning (7-9 a.m.) and evening (4-6 p.m.) peak hours, although local area characteristics occasionally result in other peaks (e.g., at major shopping or recreational centers)". The peak hours analyzed in this study were:

- 7:00 to 9:00 AM
- 4:00 to 6:00 PM

The traffic analysis time periods are the typical AM and PM peak hours as shown above.

Traffic Impact Study for the Harvest-Tulare Anaerobic Digester & Compressed Natural Gas Facility *Tulare County, California*

Traffic Counts

According to the Caltrans <u>Guide for the Preparation of Traffic Impact Studies</u>, one of the common rules for counting vehicular traffic is:

"Vehicle counts should be conducted on Tuesdays, Wednesdays, or Thursdays during weeks not containing a holiday and conducted in favorable weather conditions."

Traffic counts were conducted during the week of June 26, 27 & 28, 2012.

<u>Traffic Model</u>

The Model was used in this study to develop the following pieces of information:

• 2035 No Project background traffic volumes

Copies of the Model plots are included in Appendix C.

Intersection Analysis and Volume Adjustments

Intersection heavy vehicle percentages were developed from the Existing conditions count data. Heavy vehicle percentages used in the analysis were the <u>HCM 2000</u> 10% default. These percentages were used in all scenarios.

Traffic Signal Analysis

All signalized intersections were optimized to achieve the greatest reduction in overall intersection delay in the 2035 scenarios.

Level of Service Analysis Methods

Unsignalized and signalized intersection analyses were completed using <u>Synchro 7.0</u>, which incorporates the <u>HCM 2010</u> methodologies. <u>Synchro 7.0</u> allows for optimization of signals to provide for the greatest reduction in overall intersection delay. This optimization process can result in different signal cycle lengths for both the AM and PM peak hours of a given scenario and across all scenarios. The changing of the signal cycle length somewhat reflects the agency process whereby the agency will adjust intersection signal cycle lengths for differing traffic conditions based on current count data.

Level of Service

For analysis purposes, the <u>HCM 2010</u> defines six levels of service for various facility types. The six levels are given letter designations ranging from "A" to "F", with "A" representing the best operating conditions and "F" the worst. Quantifiable measures of effectiveness that best describe the quality of operation on the subject facility type are used to determine the facilities level of service. For segments, the quantifiable measure of effectiveness is volume to capacity measurements. For signalized and unsignalized intersections, the quantifiable measure of effectiveness is average control delay.²

Control delay for two-way stop-controlled (TWSC) intersections, which have stop signs on only the minor street approaches, is per vehicle and is computed for the stop-controlled or minor street movements only since theoretically the through movements on the major street are not experiencing any delay. Since there is no aggregation of delay for a TWSC intersection, there is no intersection level of service as a whole, only levels of service for the individual minor movements. The minor

² Control delay, according to the <u>2010 Highway Capacity Manual</u>, page 16-1, includes initial acceleration delay, queue move-up time, stopped delay, and final acceleration delay.

¹ <u>Guide for the Preparation of Traffic Impact Studies</u>, State of California Department of Transportation, December 2002, page 4.

movements generally consist of separate lefts on the major street approaches and all movements on both minor street approaches.

The table below shows the six levels of service and their corresponding ranges of average control delay for both signalized and unsignalized intersections. It also contains a brief traffic flow description for signalized intersections for each level of service category. The level of service diagrams provided throughout the report show the levels of service for the study intersections. The levels of service shown for signalized intersections are representative of the overall level of service for that intersection. For stop-controlled intersections, the level of service shown is the level of service for the specific movements as opposed to the overall intersection level of service.

			Inters	ections
INTERSE	CTION LEVEL O	F SERVICE DESCRIPTION	Signalized	Unsignalized ¹
Level of Service	Conditions	Signalized Intersection Description	Delay (sec/veh)	Delay (sec/veh)
"A"	Free Flow	Users experience very low delay. Progression is favorable and most vehicles do not stop at all.	<u>_</u> 510.0	<u>_<10.0</u>
' · B`'	Stable Operations	Vehicles travel with good progression Some vehicles stop, causing slight delay.	>10.0 - 20.0	>10.0 - 15.0
"C"	Stable Operations	Higher delays result from fair progression. A significant number of vehicles stop, although many continue to pass through the intersection without stopping.	>20.0 to 35.0	>15.0 - 25.0
"D''	Approaching Unstable	Congestion is noticeable. Progression is unfavorable, with more vehicles stopping rather than passing through the intersection.	>35.0 - 55.0	>25.0 - 35.0
"E"	Unstable Operations	Traffic volumes are at capacity. Users experience poor progression and long delays.	>55.0 - 80.0	>35.0 - 50.0
` ' F'`	Forced Flow	Intersection's capacity is oversaturated, causing poor progression and unusually long delays.	-`80.0	> 50.0

Source: 2000 Highway Capacity Manual, Transportation Research Board.

¹ Unsignalized intersections include TWSC and AWSC

CHAPTER 2 – EXISTING CONDITIONS

Roadways

Table I describes the existing street system in the study area including the street classification, number of lanes and the posted speed limits.

TABLE 1: Description Of Existing Street System											
Street	Classification	No. of Lanes (2-dir)	Posted Speed Limit (mph)								
Lovers Lane	Regional Arterial	2	25'-55								
State Route 137	Regional Arterial	2	55								
Road 240		2	251-55								
Road 248		2	55								

¹ posted 25 mph school zone for portions of the study segments

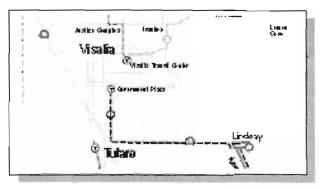

Table 2 lists the study intersections and their associated intersection control.

TABLE 2: EXISTING INTERSECTION CONTROL	
Intersection	Control Type
Lovers Lane at SR 137	Traffic Signal
Lovers Lane at Road 240	2-Way Stop
Lovers Lane at Project Driveway	2-Way Stop
Lovers Lane at Road 248	2-Way Stop

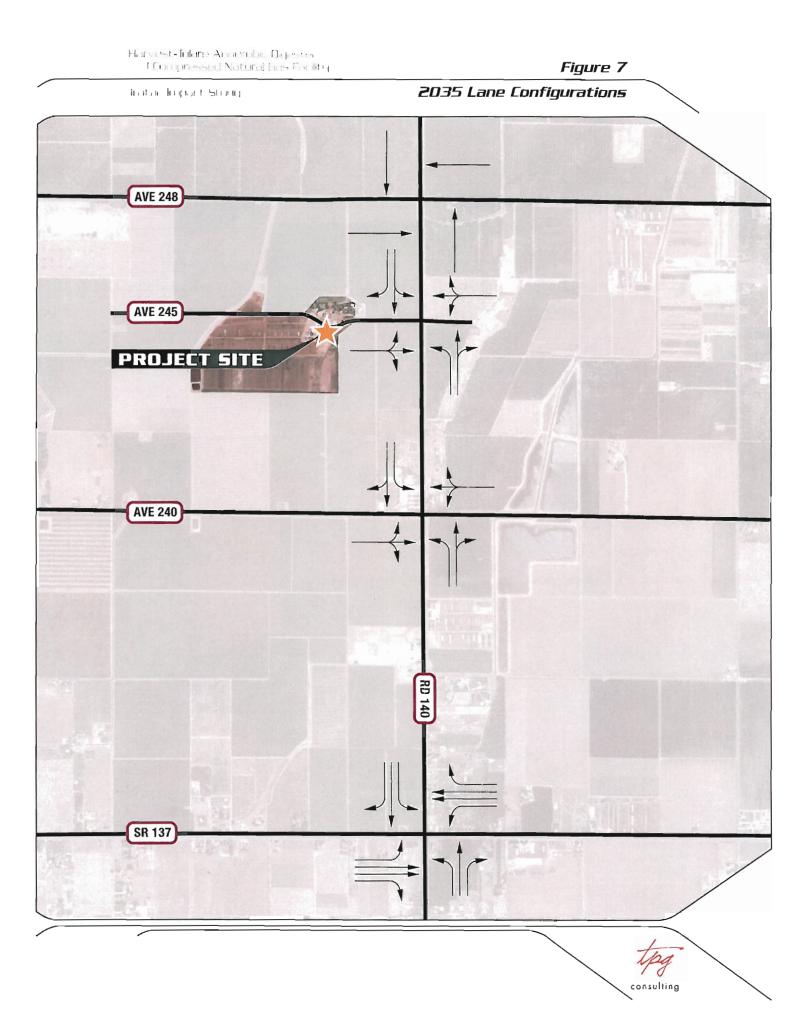
<u>Transit</u>

Currently, Tulare County Area Transit does not provide direct service to the Project site. Route 40 currently operates between Visalia and Porterville along State Route 137, which is 1.5 miles to the south of the project site.

Visalia Transit's Route 12 provides service between Visalia-Farmersville-Exeter via Caldwell Avenue, which is slightly over 4 miles north of the project site.

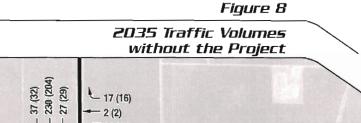
Bicycle Facilities

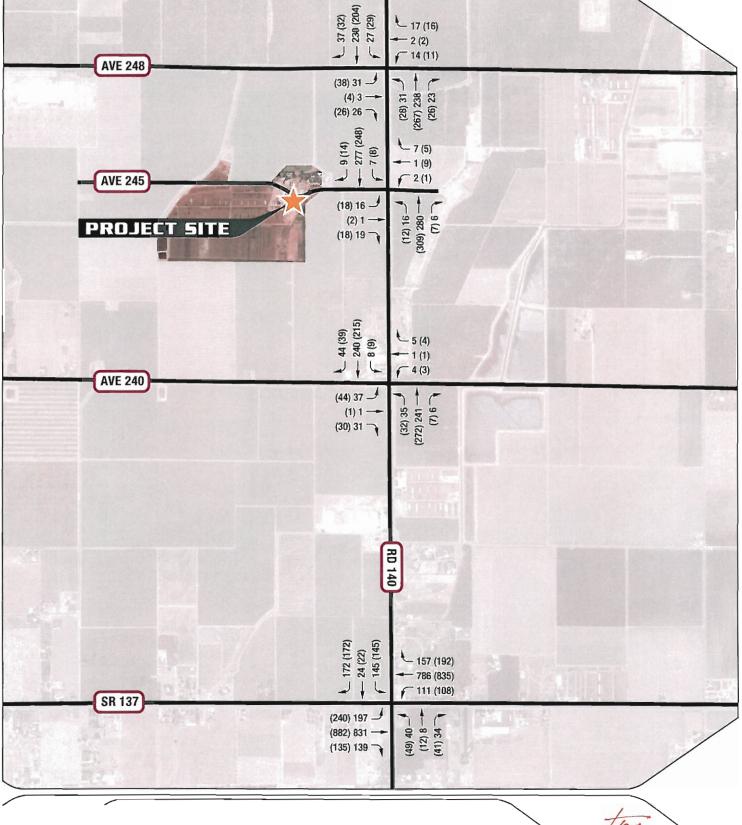
There are no bicycle facilities along any of the study roadways. State Highway 137 is designated by Caltrans as an unsigned and unmarked bike route.


Pedestrian Facilities

Currently, due to the rural nature of the area no sidewalks or crosswalks exist along any of the study roadways.

Level of Service Standards


The County of Tulare strives to meet LOS "D" or better on all roadways. This standard will apply to all intersections along Lovers Lane.

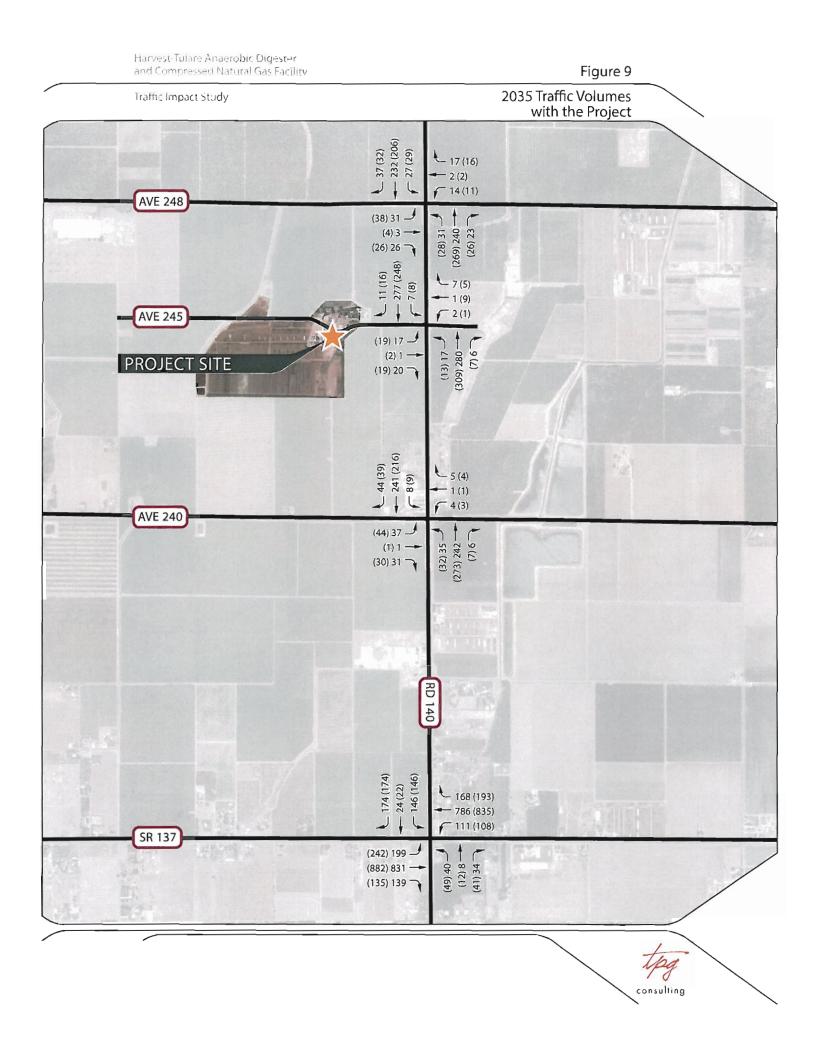


in the loop of Stocky

consulting

CHAPTER 6 – 2035 CONDITIONS PLUS THE HARVEST-TULARE FACILITY PROJECT

The evaluation of the 2035 Conditions <u>WITH</u> the Harvest-Tulare Project scenario was prepared to address future conditions with the construction of the proposed Project. The 2035 WITH Project traffic volumes were developed using the existing traffic counts and the Tulare County Association of Governments traffic model volumes. Using peak hour traffic volumes developed for the 2035 baseline and adding Project trips to the study area intersections yielded 2035 peak hour traffic volumes with the Project completed. This scenario represents a "cumulative" plus project assessment.


Level of Service

The 2035 WITH the Project intersection lane configurations are the same as those shown in Figure 7. Future peak hour traffic volumes with the Harvest-Tulare Project are shown on Figure 9. The intersections were analyzed for the 2035 WITH the Project levels of service. Table 6 shows the 2035 WITHOUT the Project levels of service for the study intersections. The signalized intersection levels of service shown are representative of the whole intersection, individual intersection movements are shown for the 2-way stop controlled locations. The 2035 WITHOUT the Project calculations of levels of service are included in Appendix E.

TABLE 6: 2035 CONDITIONS WITH THE HARVEST-	THLARE PRO	MECT - LEVEL	S OF SERVI	CF		
		ak Hour	PM Peak Hour			
Intersection	LOS	Delay ¹	LOS	Delay		
Lovers Lane at SR 137	B	10.8	B	11.6		
Lovers Lane at Road 240						
Northbound Approach	A	8.0	Á	7.9		
Southbound Approach	A	7.8	A	7.9		
Westbound Approach	B	12.2	В	12.0		
Eastbound Approach	В	13.3	B	13.6		
Lovers Lane at Project Driveway						
Northbound Approach	A	8.0	A	7.9		
Southbound Approach	A	7.9	A	8.0		
Westbound Approach	В	11.3	В	12.9		
Eastbound Approach	В	12.4	B	12.7		
Lovers Lane at Road 248						
Northbound Approach	Α	8.0	A	7.9		
Southbound Approach	A	7.9	A	8.0		
Westbound Approach	В	12.8	В	12.6		
Eastbound Approach	B	13.7	B	14.2		

¹ delay in seconds per vehicle

All study area intersections are projected to operate above the adopted County or Caltrans level of service standards in 2035 with the additional traffic expected from the Harvest-Tulare Facility Project.

CHAPTER 7 – CONCLUSIONS

As previously discussed and as shown below, all study area intersections are or are projected to operate well above the appropriate level of service standard. This condition will be true with and without the Harvest-Tulare Project traffic in both the short term and cumulative scenarios. The following table summarizes the levels of service for each of the four scenarios evaluated as part of this study.

TABLE 7: SUMMARY FOR L	EVELS OF	SERVICE							
	Ex	isting		g Plus the oject		thout the oject	2035 WITH the Project		
Intersection	LOS AM/P M	Delay ¹ AM/PM	LOS AM/PM	Delay ¹ PM	LOS AM/PM	Delay ¹ AM/PM	LOS AM/PM	Delay ¹ AM/PM	
Lovers Lane at SR 137	A/A	8.5/8.6	A/A	8.5/8.6	A/A	9.3/10.1	A/A	9.3/10.2	
Lovers Lane at Road 240									
NB Approach	A/A	7.8/7.8	A/A	7.8/7.8	A/A	8.0/7.9	A/A	8.0/7.9	
SB Approach	A/A	7.6/7.7	A/A	7.6/7.7	A/A	7.8/7.9	A/A	7.9/7.9	
WB Approach	B/B	11.7/12.1	B/B	11.8/12.2	B/B	12.2/12.0	B/B	12.2/12.0	
EB Approach	B/B	11.3/12.5	B/B	11.3/12.6	B/B	13.3/13.6	B/B	13.3/13.7	
Lovers Lane at Project Drive									
NB Approach	A/A	7.8/7.7	A/A	7.7/7.7	A/A	8.0/7.9	A/A	8.0/7.9	
SB Approach	A/A	7.6/7.8	A/A	7.6/7.8	A/A	7.9/8.0	A/A	7.9/8.0	
WB Approach	A/B	9.5/11.2	A/B	9.5/11.4	B/B	11.2/12.8	B/B	11.3/13.0	
EB Approach	A/B	9.8/10.7	A/B	10.1/10.8	B/B	12.4/12.6	B/B	12.7/12.9	
Lovers Lane at Road 248									
NB Approach	A/A	7.7/7.8	A/A	7.6/7.8	A/A	7.9/7.9	A/A	8.0/7.9	
SB Approach	A/A	7.6/7.8	A/A	7.6/7.8	A/A	7.9/8.0	A/A	7.9/8.0	
WB Approach	B/B	11.1/12.7	B/B	11.0/12.8	B/B	12.7/12.5	B/B	12.8/12.6	
EB Approach	A/B	9.9/13.4	A/B	9.9/13.5	B/B	13.7/14.1	B/B	13.8/14.3	

Project Mitigations

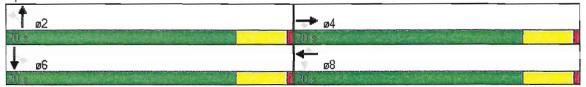
The Project will have no significant impact on the existing or future levels of service. Therefore, no mitigation will be required.

APPENDIX A

EXISTING CONDITIONS

INTERSECTION LEVELS OF SERVICE CALCULATIONS

Company in Planata of a State and a 10 ⁻¹⁰ workfull Black of a code of a state of a	۶		>	*		×	1	t	1	1	ł	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	7	7	1	7	٦	Þ		٦	1>	
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850		0.985			0.924	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1835	0	1770	1721	0
Flt Permitted	0.593			0.584			0.663			0.676		
Satd. Flow (perm)	1105	1863	1583	1088	1863	1583	1235	1835	0	1259	1 721	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			12			77		13			75	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2903			3161			2528			1984	
Travel Time (s)		66.0			71.8			57.5			45.1	
Volume (vph)	48	248	11	11	242	71	30	104	12	67	67	69
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	52	270	12	12	263	77	33	113	13	73	73	75
Lane Group Flow (vph)	52	270	12	12	263	77	33	126	0	73	148	0
Turn Type	Perm		Perm	Perm		Perm	Perm			Perm		
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2			6		
Detector Phases	4	4	4	8	8	8	2	2		6	6	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		20.0	20.0	
Total Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0
Total Split (%)			50.0%		50.0%	50.0%		50.0%	0.0%	50.0%		0.0%
Maximum Green (s)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0		16.0	16.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	Max	Max		Max	Max	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0	0	0	0	0	0		0	0	
Act Effct Green (s)	10.5	10.5	10.5	10.5	10 <i>.</i> 5	10.5	19.6	19.6		19.6	19.6	
Actuated g/C Ratio	0.29	0.29	0.29	0.29	0.29	0.29	0.56	0.56		0.56	0.56	
v/c Ratio	0.17	0.51	0.03	0.04	0.50	0.15	0.05	0.12		0.10	0.15	
Uniform Delay, d1	10.5	11.7	0.0	10.1	11.7	0.0	4.1	3.8		4.2	2.0	
Control Delay	9.2	11.4	4.8	8.1	11.3	3.3	6.6	6.2		6.9	4.3	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	9.2	11.4	4.8	8.1	11.3	3.3	6.6			6.9	4.3	
LOS	А	В	А	A	В	А	A			А	А	
Approach Delay		10.8			9.4			6.3			5.2	


SR 137 at Lovers Ln (Rd 140) 12:00 pm 7/12/2012 2012 tpg consulting, inc.

Synchro 6 Report Page 1 Lanes, Volumes, Timings 3: Int

0. III											.,	12012
	۶	-	\mathbf{F}	4	4	×.	•	†	1	\	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS	4.5	В		- 1317A	А			A			A	
Intersection Summary												
Area Type:	Other	de la compañía de la	A STATE	1 Cart	19. 51 1. 180	12 2000	Arran arras	Per anis 1	- 1- 74 12	3.42 - 12	1000	14 (14)
Cycle Length: 40												
Actuated Cycle Length:	34.7											
Natural Cycle: 40												
Control Type: Actuated	-Uncoord	linated										
Maximum v/c Ratio: 0.5	51											
Intersection Signal Dela	av: 8.5			1	ntersect	tion LOS	: A					
Intersection Capacity U	2	40.8%		ŀ	CU Lev	el of Ser	vice A					

Splits and Phases: 3: Int

Analysis Period (min) 15

7/12/2012

SR 137 at Lovers Ln (Rd 140)

S:\Projects\12-1273 Tul Co Compost TIS\Calcs\existing SR 137 at Lovers (pm).sy7 7/12/2012

	۶		\mathbf{i}	*	-	×.	*	1	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኻ	1	7	ሻ	1	۴	5	12		٦	1	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50		50	50	
Trailing Detector (ft)	0	0	0	0	0	0	0	0	<u> </u>	0	0	
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850	0.050	0.980		0.050	0.929	
Flt Protected	0.950	1000	(= 0.0	0.950	1000		0.950	1005	•	0.950	1700	•
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1825	0	1770	1730	0
Flt Permitted	0.597			0.558	4000	4500	0.666	1005	0	0.693	4700	•
Satd. Flow (perm)	1112	1863	1583	1039	1863	1583	1241	1825	0	1291	1730	0
Right Turn on Red			Yes			Yes		10	Yes			Yes
Satd. Flow (RTOR)			20			93	4.00	13	4.00	4.00	68	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2903			3161			2528			1984	
Travel Time (s)	-	66.0			71.8	~ ~	10	57.5	10	70	45.1	
Volume (vph)	63	269	18	11	239	86	12	79	12	79	69	63
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	68	292	20	12	260	93	13	86	13	86	75	68
Lane Group Flow (vph)	_ 68	292	_ 20	_ 12	260	93	_ 13	99	0	86	143	0
Turn Type	Perm		Perm	Perm	•	Perm	Perm			Perm		
Protected Phases		4			8	•	0	2		0	6	
Permitted Phases	4		4	8	•	8	2	0		6	0	
Detector Phases	4	4	4	8	8	8	2	2		6	6	
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	•	20.0	20.0	0.0
Total Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	0.0	20.0	20.0	0.0
Total Split (%)		50.0%				50.0%	50.0%		0.0%	50.0%		0.0%
Maximum Green (s)	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0		16.0	16.0	
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5		3.5	3.5	
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	
Lead/Lag												
Lead-Lag Optimize?	0.0	0.0	0.0	2.0	0.0	2.0	~ ~	2.0		2.0	2.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None	None	Max	Max		Max	Max	
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0	0	0		0	0		0	0	
Act Effct Green (s)	10.8	10.8	10.8	10.8	10.8	10.8	19.5	19.5		19.5	19.5	
Actuated g/C Ratio	0.29	0.29	0.29	0.29	0.29	0.29	0.56	0.56		0.56		
v/c Ratio	0.21	0.53	0.04	0.04	0.48	0.18	0.02	0.10		0.12	0.14	
Uniform Delay, d1	10.5	11.7	0.0	10.0	11.4	0.0	4.2	3.7		4.4		
Control Delay	9.5	11.6	4.3	8.0	11.1	3.1	6.7	6.2		7.2		
Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0		0.0		
Total Delay	9.5	11.6	4.3	8.0		3.1	6.7	6.2		7.2		
LOS	A	В	A	A			A			A		
Approach Delay		10.9			8.9			6.3			5.6	

SR 137 at Lovers Ln (Rd 140) 12:00 pm 7/12/2012 2012 tpg consulting, inc.

Synchro 6 Report Page 1


SR 137 at Lovers Ln (Rd 140)

S:\Projects\12-1273							at Love			7/1	2/2012
	٠	\mathbf{x}	1	4	*	•	ŧ	<i>)</i> **	5	T	1

	-		¥ .	₩		~	7	I	C	-	•	•
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Approach LOS	150.7	В	10-11-12	1.660	А		a rangered	А	and the second	1.00	A	
Intersection Summary	1											
Area Type:	Other	142-			7.00		17.5	11.2	1000	16 2 2 1		10
Cycle Length: 40												
Actuated Cycle Lengt	h: 34.8											
Natural Cycle: 40												
Control Type: Actuate	d-Uncoord	linated										
Maximum v/c Ratio: 0	.53											
Intersection Signal De	elay: 8.6			l.	ntersec	tion LOS	S: A					
Intersection Capacity	-	38.5%		ŀ	CU Lev	el of Ser	vice A					

Splits and Phases: 3: Int

Analysis Period (min) 15

	TW	O-WAY STOP	CONTRO	DL SU	MIV	IARY		- 5 - TAN			
General Information	1		Site Ir	nforma	atio	n					
Analyst	C. Clouse		Interse	ction			Lovers (R	d 140)at Av	e 240	
Agency/Co.	Tul. Co. C	Compost	Jurisdi	ction			Tulare Co				
Date Performed	7/12/2012		Analys	is Year			2012	2012			
Analysis Time Period	AM Peak					_					
	-1273										
East/West Street: Ave.						: Lovers l	Lane				
Intersection Orientation:	North-South		Study F	Period (hrs):	1.00					
Vehicle Volumes ar	nd Adjustme	nts									
Major Street		Northbound					Southbou	nd			
Movement	1	2	3			4	5			6	
	L	T	R				T			R	
Volume (veh/h)	19	126		1		4	176		_	42	
Peak-Hour Factor, PHF	1.00	1.00	1.00			1.00	1.00	\rightarrow	7	.00	
Hourly Flow Rate, HFR (veh/h)	19	126	1			4	176			42	
Percent Heavy Vehicles	10			10							
Median Type				Undivi	ided				_		
RT Channelized			0							0	
Lanes	1					1	1			0	
Configuration	L					L			TR		
Upstream Signal		0					0				
Minor Street		Eastbound					Westbou	nd			
Movement	7	8	9			10	11			12	
	L	7	R			L	Т			R	
Volume (veh/h)	16	11	11			3	12			1	
Peak-Hour Factor, PHF	1.00	1.00	1.00			1.00	1.00		1	.00	
Hourly Flow Rate, HFR (veh/h)	16	11	11		3		12			1	
Percent Heavy Vehicles	10	0	0		10		0			0	
Percent Grade (%)		0					0				
Flared Approach		N					N				
Storage		0	1				0	Í			
RT Channelized			0							0	
Lanes	0	1	0		_	0	1			0	
Configuration		LTR					LTR				
Delay, Queue Length, a	nd Level of Se	rvice									
Approach	Northbound	Southbound		Westbo	und			Eastbo	ound		
Movement	1	4	7	8		9	10	1	1	12	
Lane Configuration	L	L		LTR	·			LT	R		
v (veh/h)	19	4		16				3	8		
C (m) (veh/h)	1305	1411		553				61	3		
v/c	0.01	0,00		0.03	2			0.0	26		
95% queue length	0.04	0.01		0.09				0.2			
Control Delay (s/veh)	7.8	7.6		11.7				11	_		
LOS	A	A		В				E			
Approach Delay (s/veh)				<u>B</u>			11.3				
Approach LOS	~~			B				B			
Convright @ 2010 University of Fl							Generated: 7/12/2012 10:42 A				

HCS+TM Version 5.6

Generated: 7/12/2012 10:42 AM

C. Clouse Tul. Co. C 7/12/2012 PM Peak	Compost	Interse	offormation	ation	Lovers (F	d 1401at /				
Tul. Co. C 7/12/2012 PM Peak	Compost		ction		Lovers /R	2d 1401at /				
7/12/2012 PM Peak		li vel e al i				Lovers (Rd 140)at Ave 240				
PM Peak	>	llhnuusan	ction		Tulare Co					
	-	Analys	is Year		2012	2012				
1070										
1273										
40		North/S	South St	reet: <i>Lover</i>	s Lane					
North-South		Study F	Period ()	nrs): 1.00						
d Adjustme	nts			• • • • • • • • • • • • • • •		<u></u>				
	Northbound				Southbou	Ind				
11	2	3		4	5		6			
							R			
							42			
1.00	7.00	1.00		1.00	1.00		1.00			
30	186	2		2	149		42			
10				10			-			
			Undivided							
		0					0			
1				1	1		0			
L		TR	TR L				TR			
	0				0					
	Eastbound	· · · · · · · ·			Westbou	nd				
7				10	11		12			
L	τ	R		L	Т		Ř			
48	22	31		0	11		1			
1.00	1.00	1.00		1.00	1.00		1.00			
48	22	31		0	11		1			
10	0	0		10	0		0			
	0				0	<u> </u>				
	N				N					
	0				0					
		0				_	0			
0	1	0		0	1		0			
	<u>L</u> TR				LTR					
d Level of Se	rvice									
Northbound	Southbound	\	Nestbo	und	E	Eastbound				
1	4	7	8	9	10	11	12			
L	L		LTR			LTR				
30	2		12			101				
1336	1339		519			583				
0.02	0.00		0.02			0.17				
0.07	0.00		0.07			0.63				
7.8	7.7		12.1			12.5				
A	A		В			B	1			
			12.1			12.5				
	10 1 1 1 1 1 1 1 1 1 48 1.00 48 10 48 10 48 10 48 10 48 10 48 10 48 10 48 10 48 10 48 10 10 48 10 10 48 10 10 10 10 10 10 10 10 10 10	30 186 1.00 1.00 30 186 10 10 11 1 10 11 1 10 11 1 10 0 Eastbound 7 8 22 1.00 1.00 48 22 1.00 1.00 48 22 10 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4	30 186 2 1.00 1.00 1.00 30 186 2 10 $$ $$ 10 $$ $$ 10 $$ $$ 10 $$ $$ 10 $$ $$ 10 $$ $$ 10 $$ $$ 10 0 0 1 1 0 1 1 0 1.00 1.00 1.00 48 22 31 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00 0 0 0 0 0 0 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

HCS+TM Version 5.6

Generated: 7/12/2012 10:47 AM

General Information			Site Ir	oforma	ation					
Analyst	C. Clouse		Interse				d 140)at A	ve 248		
Agency/Co.	Tul. Co. (Jurisdi			Tulare Co	unty			
Date Performed	7/12/201		Analys	is Year		2012	2012			
Analysis Time Period	AM Peak									
, ,	-1273									
East/West Street: Ave.					reet: Love	ers Lane				
ntersection Orientation:	North-South		Study F	Period (h	nrs): 1.00					
Vehicle Volumes an	nd Adjustme	nts								
Major Street		Northbound				Southbou	nd			
Movement	1	2	3		4	5		6		
	L	T	R		L	T		R		
/olume (veh/h)	3	125	4		2	151				
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00		
Hourly Flow Rate, HFR veh/h)	3	125	4		2	151		43		
Percent Heavy Vehicles	10		10							
Median Type				Undivi	ded					
RT Channelized			0					0		
anes	0	1	0		0	1		0		
Configuration	LTR				LTR_					
Jpstream Signal		0				0				
Minor Street		Eastbound				Westbou	nd			
Novement	7	8	9			11		12		
	L	Т	R		L	Т		R		
/olume (veh/h)	8	4	22		12	6		1		
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00		
Hourly Flow Rate, HFR veh/h)	8	4	22		12	6		1		
Percent Heavy Vehicles	10	0	0		10	0		0		
Percent Grade (%)		0				0				
Iared Approach		N				N				
Storage		0				0				
RT Channelized			0					0		
anes	0	1	0		0	1		0		
Configuration		LTR		[-		LTR				
Delay, Queue Length, a	nd Level of Se									
Approach	Northbound	Southbound		Westbo	und		Eastbound			
Novement	1	4	7	8	9	10	11	12		
ane Configuration	LTR	LTR		LTR			LTR	+		
/ (veh/h)	3	2		19			34			
C (m) (veh/h)	1333	1409		605			762			
//c	0.00	0.00		0.03			0.04	+		
95% queue length	0.00	0.00		0.10			0.14			
Control Delay (s/veh)	7.7	7.6					9.9			
			11.1					+		
OS	A	A		B						
Approach Delay (s/veh)			11.1				9,9			
Approach LOS				В			A			

HCS+TM Version 5.6

Generated: 7/12/2012 11:10 AM

	TW	O-WAY STOP	CONTRO	DL SU	MN	IARY					
General Information	n		Site Ir	nforma	atio	n					
Analyst	C. Clouse)	Interse	ction			Lovers (R	d 140)at /	Ave 248		
Agency/Co.	Tul. Co. (Jurisdi				Tulare Co				
Date Performed	7/12/2012		Analys	is Year			2012				
Analysis Time Period	PM Peak										
Project Description 12	-1273							_			
East/West Street: Ave.			North/S	outh St	reet	: Lovers L	ane				
Intersection Orientation:				Period (h							
Vehicle Volumes an		nts									
Major Street		Northbound					Southbou	nd			
Movement	1	2	3			4	5		6		
	L.		R			L	T		R		
Volume (veh/h)	12	206	4			7	192		43		
Peak-Hour Factor, PHF	1.00	1.00	1.00			1.00	1.00		1.00		
Hourly Flow Rate, HFR (veh/h)	12	206	4		7		192		43		
Percent Heavy Vehicles	10			10							
Median Type	- ,		Undivided			, .			_		
RT Channelized			0						0		
Lanes	0	1	-	0		0	1		0		
Configuration	LTR	, , , , , , , , , , , , , , , , , , , ,				LTR					
Upstream Signal		- 0	-				0				
Minor Street		Eastbound					Westbou	nd			
Movement	7	8	9			10	11		12		
		<u></u>	R			L	<u>T</u>				
Volume (veh/h)	41	20	11		16		22		9		
Peak-Hour Factor, PHF	1.00	1.00	1.00			1.00	1.00		1.00		
Hourly Flow Rate, HFR (veh/h)	41	20	11		16		22		9		
Percent Heavy Vehicles	10	0	0		10		0		0		
Percent Grade (%)		0			1		0				
Flared Approach		N					N				
Storage		0					0				
RT Channelized			0						0		
Lanes	0	1	0			0	1		0		
Configuration		LTR					LTR				
Delay, Queue Length, a	nd Level of Se	rvice									
Approach	Northbound	Southbound		Westbo	und		E	Eastboun	d		
Movement	1	4	7	8		9	10	11	12		
Lane Configuration	LTR	LTR		LTR				LTR			
v (veh/h)	12	7		47				72			
C (m) (veh/h)	1287	1314		514				502			
v/c	0.01	0.01		0.09				0.14			
95% queue length	0.03	0.02		0.30				0.50			
Control Delay (s/veh)	7.8	7.8		12.7				13.4			
LOS	A	A		В				В			
Approach Delay (s/veh)			12.7				13.4				
Approach LOS			B				B				
Copyright @ 2010 University of Fl				COLTM V			1		012 11:08 A		

HCS+TM Version 5.6

Generated: 7/12/2012 11:08 AM

Page	1	of	1
------	---	----	---

General Informatio	n		Cito I	nform	atio	<u> </u>					
					atio	on					
Analyst	C. Clouse		Interse					d 140) at i	Proj Drive		
Agency/Co.	Tul. Co. 0		Jurisdi				Tulare County				
Date Performed	7/12/2012 AM Peak		Analys	sis Year			2012				
Analysis Time Period								_			
	2-1273										
East/West Street: Proje						: Lovers I	Lane				
			Study	Period ((nrs).	1.00					
Vehicle Volumes a	nd Adjustme										
Major Street		Northbound					Southbou	ind			
Movement	1	2	3			4	5		6		
	L	T	R				T		_ R		
/olume (veh/h) Peak-Hour Factor, PHF		149	3			2	167		1.00		
Hourly Flow Rate, HFR	1.00	1.00	1.00	' 	-	1.00	1.00		1.00		
veh/h)	4	149	3	3		2	167		57		
Percent Heavy Vehicles	10	~~	1			10	,				
Median Type				Undiv	rided						
RT Channelized			0						0		
anes	1	1	0			0	1		1		
Configuration	L		TR			LT			R		
Jpstream Signal		0					0				
Minor Street		Eastbound					Westbou	nd			
Novement	7	8	9			10	11		12		
	L	T	R			L	T		R		
/olume (veh/h)	4	0	7			1	0		4		
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00		1.00		1.00		
Hourly Flow Rate, HFR veh/h)	4	0	7		1		0		4		
Percent Heavy Vehicles	10	0	0		10		0		0		
Percent Grade (%)		0					0				
Flared Approach		N					N				
Storage		0					0				
RT Channelized			0		-				0		
anes	0	1	0			0	1		0		
Configuration		LTR					LTR				
Delay, Queue Length, a	nd Level of Se	rvice									
Approach	Northbound	Southbound		Westbo	und		F	Eastbound			
Novement	1	4	7	8		9	10	11	12		
ane Configuration		LT		LTR	2			LTR	12		
v (veh/h)	4	2		5				11			
C (m) (veh/h)	1299	1381		809				754			
//c	0.00	0.00		0.01				0.01			
95% queue length	0.01	0.00		0.02				0.04			
Control Delay (s/veh)	7.8	7.6		9.5				9.8			
OS											
	A	A		A			ļ	<u>A</u>			
pproach Delay (s/veh)	~		9.5				9.8				
pproach LOS			A				A				

HCS+TM Version 5.6 Generated: 7/12/2012 11:15 AM

	TW	O-WAY STOP	CONTRO	DL SI	JMN	IARY					
General Information	n	-	Site Ir	nform	atio	n					
Analyst	C. Clouse		Interse	ction			Lovers (R	d 140) ai	Proj Drive		
Agency/Co.	Tul. Co. C		Jurisdi				Tulare Co				
Date Performed	7/12/2012		Analys	is Yea	r —		2012				
Analysis Time Period	PM Peak										
Project Description 12	-1273										
East/West Street: Proje	ct Driveway		North/S	South S	Street	: Lovers I	Lane				
Intersection Orientation:	North-South		Study F	Period	(hrs)	1.00					
Vehicle Volumes ar	nd Adjustme	nts									
Major Street		Northbound					Southbou	nd			
Movement	1	2	3			4	5		6		
	L	T	R			L	T		R		
Volume (veh/h)	3	214		1		2	186		3		
Peak-Hour Factor, PHF	1.00	1.00	1.00			1.00	1.00		1.00		
Hourly Flow Rate, HFR (veh/h)	3	214	1			2	186		3		
Percent Heavy Vehicles	10		10								
Median Type				Undiv	vided						
RT Channelized			0						0		
Lanes	1	1 1				0	1		1		
Configuration	L			TR		LT			R		
Upstream Signal		0					0				
Minor Street		Eastbound					Westbou	nd			
Movement	7	8	9			10	11		12		
	Ŀ	Т	R			L	Т		R		
Volume (veh/h)	5	1	5			3	5		3		
Peak-Hour Factor, PHF	1.00	1.00	1.00			1.00	1.00		1.00		
Hourly Flow Rate, HFR (veh/h)	5	1	5		3		5		3		
Percent Heavy Vehicles	10	0	0		10		0		0		
Percent Grade (%)		0					0				
Flared Approach		N					N				
Storage	_	0					0				
RT Channelized			0						0		
Lanes		1	0			0	1		0		
Configuration	-	LTR					LTR				
Delay, Queue Length, a	nd Level of Se	rvice									
Approach	Northbound	Southbound		Westb	ound		6	Eastbour	Id		
Movement	1	4	7	8	_	9	10	11	12		
Lane Configuration	L	LT		LTI	२			LTR			
v (veh/h)	3	2		11				11			
C (m) (veh/h)	1338	1309		588	8			641			
v/c	0.00	0.00		0.0	2			0.02			
95% queue length	0.01	0.00		0.0				0.05			
Control Delay (s/veh)	7.7	7.8		11.				10.7			
LOS	A	A		B				B			
				<u> </u>							
Approach Delay (s/veh)							10.7				
Approach LOS				B			B Generaled: 7/12/2012 11:16 A				

HCS+[™] Version 5.6

Generaled: 7/12/2012 11:16 AM

APPENDIX B

EXISTING PLUS THE PROJECT CONDITIONS

INTERSECTION LEVELS OF SERVICE CALCULATIONS

APPENDIX D

2035 WITHOUT THE PROJECT CONDITIONS

INTERSECTION LEVELS OF SERVICE CALCULATIONS

S:\Projects\12-1273 Tul Co Compost TIS\Calcs\2035 without\2035 without SR 137 at	Lovers (AM).sy7
3: Int	7/13/2012

	٨		7	¥	4	×.	1	t	1	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	19	^	7	٢	1	7	ሻ	1	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.295			0.275			0.740			0.752		
Satd. Flow (perm)	550	3539	1583	512	3539	1583	1378	1863	1583	1401	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			151		٤	171			37			168
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2903			3161			2528			1984	
Travel Time (s)		66.0			71.8			57.5			45.1	
Volume (vph)	197	831	139	111	786	157	40	8	34	145	24	172
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	214	903	151	121	854	171	43	9	37	158	26	187
Lane Group Flow (vph)	214	903	151	121	854	171	43	9	37	158	26	187
Turn Type	Perm		Perm	Perm		Perm	Perm		Perm	Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phases	4	4	4	8	8	8	2	2	2	6	6	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)		66.7%			66.7%	66.7%	33.3%				33.3%	
Maximum Green (s)	36.0	36.0	36.0	36.0	36.0	36.0	16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lead/Lag												
Lead-Lag Optimize?	~ ~					0.0		0.0		0.0	0.0	• •
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Max		Max	Max	Max	Max
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0	0		0	0	0	0
Act Effct Green (s)	24.3	24.3	24.3	24.3	24.3	24.3	16.8		16.8	16.8	16.8	16.8
Actuated g/C Ratio	0.49	0.49	0.49	0.49	0.49	0.49	0.34		0.34	0.34	0.34	0.34
v/c Ratio	0.79	0.52	0.18	0.48	0.49	0.20	0.09		0.07	0.33	0.04	0.29
Uniform Delay, d1	10.2	8.4	0.0	8.2	8.2	0.0	11.0		0.0	12.0	10.8	1.1
Control Delay	21.1	8.4	1.5	11.6	8.2	1.5	16.4			18.8	16.0	6.0
Queue Delay	0.0	0.0	0.0	0.0		0.0	0.0			0.0		0.0
Total Delay	21.1	8.4	1.5	11.6	8.2							6.0
LOS Approach Delay	С	A 9.7	A	В	A 7.6	A	В	B 12 <i>.</i> 5		В	В 12.1	A
		9.7			0.1			12.0			12.1	

SR 137 at Lovers Ln (Rd 140) 12:00 pm 7/12/2012 2012 tpg consulting, inc.

Synchro 6 Report Page 1 S:\Projects\12-1273 Tul Co Compost TIS\Calcs\2035 without\2035 without SR 137 at Lovers (AM).sy7 3: Int 7/13/2012

	۶		$\mathbf{\hat{v}}$	¥	-	*	•	Ť	1	1	Ļ	-
Lane Group Approach LOS	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Intersection Summary	Other											
Cycle Length: 60	Other											
Actuated Cycle Length Natural Cycle: 60		tu a ta al										
Control Type: Actuated Maximum v/c Ratio: 0.7	79	Inated										
Intersection Signal Del Intersection Capacity L Analysis Period (min) 1	Itilization	57.3%				ion LOS el of Serv						

Splits and Phases: 3: Int

S:\Projects\12-1273 Tul Co Compost TIS\Calcs\2035 without\2035 without SR 137 at Lovers (pm).sy7 S:\Projects\12-1273 Tul Co Compost TIS\Calcs\2035 without\2035 without SR 137 at Lovers (pm).sy7

	۶		-	-	4	×	•	†	1	1	Ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	††	7	3	††	7	ሻ	1	7	۲	†	ř
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Turning Speed (mph)	15		9	15		9	15		9	15		9
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850			0.850			0.850			0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.278			0.260			0.742			0.749		
Satd. Flow (perm)	518	3539	1583	484	3539	1583	1382	1863	1583	1395	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			147			209			45			165
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2903			3161			2528			1984	
Travel Time (s)		66.0			71.8			57.5			45.1	
Volume (vph)	240	882	135	108	835	192	49	12	41	145	22	172
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	261	959	147	1 17	908	209	53	13	45	158	24	187
Lane Group Flow (vph)	261	959	147	117	908	209	53	13	45	158	24	187
Turn Type	Perm		Perm	Perm		Perm	Perm		Perm	Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phases	4	4	4	8	8	8	2	2	2	6	6	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	45.0	45.0	45.0	45.0	45.0	45.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)		69.2%			69.2%	69.2%			30.8%			
Maximum Green (s)	41.0	41.0	41.0	41.0	41.0	41.0	16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None	None	Max	Max			Max	Max
Walk Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Flash Dont Walk (s)	11.0	1 1.0	11.0	11.0	1 1.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Act Effct Green (s)	32.4	32.4	32.4	32.4	32.4	32.4	16.7	16.7	16.7	16.7	16.7	16.7
Actuated g/C Ratio	0.56	0.56	0.56	0.56	0.56	0.56	0.29	0.29			0.29	0.29
v/c Ratio	0.89	0.48	0.15	0.43	0.46	0.21	0.13	0.02			0.04	0.32
Uniform Delay, d1	10.8	7.3	0.0	7.0	7.2	0.0	14.8	14.4			14.5	1.7
Control Delay	32.1	7.5	1.4	10.6	7.3	1.3	20.0	18.9			19.0	7.1
Queue Delay	0.0	0.0	0.0	0.0		0.0	0.0	0.0			0.0	0.0
Total Delay	32.1	7.5	1.4	10.6	7.3	1.3	20.0	18.9				7.1
LOS	С	A	A	В			В	В		С		А
Approach Delay		11.5			6.6			14.8		_	15.0	

SR 137 at Lovers Ln (Rd 140) 12:00 pm 7/12/2012 2012 tpg consulting, inc.

Synchro 6 Report Page 1

S:\Projects\12-1273 Tul Co Compost TIS\Calcs\2035 without\2035 without SR 137 at Lovers (pm).sy7 S:\Projects\12-1273 Tul Co Compost TIS\Calcs\2035 without\2035 without SR 137 at L701@R9 (pm).sy7

× _	¥ 4	e 🖛	۰.	•	1	1	1	Ļ	4
Lane GroupEBLEBTApproach LOSB	EBR WB	BL WBT	WBR	NBL	NBT B	NBR	SBL	SBT B	SBR
Intersection Summary Area Type: Other Cycle Length: 65 Actuated Cycle Length: 57.4 Natural Cycle: 65 Control Type: Actuated-Uncoordinated Maximum v/c Ratio: 0.89 Intersection Signal Delay: 10.1 Intersection Capacity Utilization 61.1%		Intersecti ICU Leve		. –					

Splits and Phases: 3: Int

1 @2	ع ه •4
20 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
↓ _ ø6	◆ _ _{Ø8}
2015 Charles and a charles of the	4Fig striken bet the and when we added a second strike a second second second strike a second

	CONTROL SUMMARY										
General Informatio	<u>n</u>		Site I	nforma	ation	<u> </u>					
Analyst	C. Clouse	e	Interse	ction			Lovers (R	d 140)at A	lve 240		
Agency/Co.	Tul. Co. (Compost	Jurisdi	ction			Tulare County				
Date Performed	7/12/201	2	Analys	is Year		2035 WIT	2035 WITHOUT Project				
Analysis Time Period	AM Peak										
Project Description 12	2-1273										
East/West Street: Ave.	240		North/S	South St	reet:	Lovers	Lane				
ntersection Orientation:	North-South		Study Period (hrs): 1.00								
Vehicle Volumes a	nd Adjustme	nts									
Major Street	1	Northbound					Southbou	nd			
Movement	1	2	3			4	5		6		
	L.		R			L	т		R		
Volume (veh/h)	35	241	6			8	240		44		
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.	.00	1.00		1.00		
Hourly Flow Rate, HFR veh/h)	35	241	6		-	8	240		44		
Percent Heavy Vehicles	10					10			~		
Median Type			·	Undivided							
RT Channelized			0						0		
anes	1	1	0		a an :	1	1		0		
Configuration	L		TR		L				TR		
Jpstream Signal		0					0				
Minor Street		Eastbound					Westbou	nd			
Novement	7	8	9	-+		10	11		12		
	L		R			L	Т		R		
/olume (veh/h)	37	1	31			4	1		5		
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.	.00	1.00		1.00		
fourly Flow Rate, HFR veh/h)	37	1	31		4		1		5		
Percent Heavy Vehicles	10	0	0		10		0		0		
Percent Grade (%)		0					0				
lared Approach		N			<u> </u>		N				
Storage		0					0	<u> </u>			
RT Channelized			0						0		
anes	0	1	0			0	1	<u> </u>	0		
Configuration		LTR			_	U	LTR				
Delay, Queue Length, a	Northbound			Maatha	Incl						
Approach		Southbound		Nestbou				Eastbound			
Novement	1	4	7	8		9	10	11	12		
ane Configuration	L	L		LTR				LTR			
(veh/h)	35	8		10				69			
(m) (veh/h)	1234	1273		511				504			
/c	0.03	0.01		0.02	T			0.14			
5% queue length	0.09	0.02		0.06				0.47			
Control Delay (s/veh)	8.0	7.8		12.2	_			13.3			
.OS	A	A		B				B			
pproach Delay (s/veh)				12.2				13.3			
pproach LOS	-			B			<u> </u>				

HCS+TM Version 5.6

Generated: 7/13/2012 2:41 PM

General Information			Site Information								
						(a) (a)	1110101	0.40			
Analyst	C. Clouse Tul. Co. C		Uurisdie			Lovers (Rd 140)at Ave 240 Tulare County					
Agency/Co. Date Performed	7/12/2012					2035 WITHOUT Project					
Analysis Time Period	PM Peak			Analysis Year 2035 WITHOUT Project							
	-1273]L								
East/West Street: Ave.			North/S	outh Stree	t. Lovers	Lane					
Intersection Orientation:			North/South Street: Lovers Lane								
		nta									
Vehicle Volumes ar		Northbound		·		Southbou					
Major Street	1	2	3		4	5		6			
	1	<u>T</u>	R					R			
/olume (veh/h)	32	272	7		9	215		39			
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00			
Hourly Flow Rate, HFR (veh/h)	32	272	7		9	215		39			
Percent Heavy Vehicles	10		Nerri		10			~-			
Median Type	1			Undivided							
RT Channelized			0					0			
anes	1	1	0		1	1		0			
Configuration	L		TR		L			TR			
Jpstream Signal	-	0				0					
Minor Street		Eastbound				Westbou	nd				
Novement	7	8	9		10	11		12			
	L	Τ	R		L	Т		R			
Volume (veh/h)	44	1	30		3	1		5			
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00			
Hourly Flow Rate, HFR (veh/h)	44	1	30		3	1		5			
Percent Heavy Vehicles	10	0	0		10	0		0			
Percent Grade (%)		0				0					
Flared Approach		N				N					
Storage		0				0					
RT Channelized			0					0			
anes	0	1	0		0	1		0			
Configuration	-	LTR				LTR					
Delay, Queue Length, a	nd Level of Se	rvice									
Approach	Northbound	Southbound	\	Vestbound		E	Eastbound				
Novement	1	4	7	8	9	10	11	12			
ane Configuration	L	L		LTR			LTR	+			
/ (veh/h)	32	9		9			75	+			
C (m) (veh/h)	1266	1239		526			494	+			
	0.03	0.01		0.02			0.15				
		0.02		0.02			0.75				
95% queue length	0.08										
Control Delay (s/veh)	7.9	7.9		12.0			13.6				
_OS	A	A		В			В				
Approach Delay (s/veh)				12.0	_		13.6				
Approach LOS				B			B				

HCS+TM Version 5.6

Generated: 7/13/2012 2:43 PM

0			Site Information								
General Informatio					ion			Carrier and a			
Analyst	C. Clous		Interse				Lovers (Rd 140) at Proj Driv				
Agency/Co.		Compost	Jurisdi			Tulare County					
Date Performed	7/12/201		Analysis Year 2035 WITHOUT Project								
Analysis Time Period	AM Peak	,									
	2-1273										
East/West Street: Proje			North/South Street: Lovers Lane								
ntersection Orientation:	North-South		Study Period (hrs): 1.00								
Vehicle Volumes a	nd Adjustme	nts									
Major Street		Northbound				Southbou	ind				
Movement	1	2	3		4	5		6			
	L	T	R		L	T		R			
/olume (veh/h)	16	280	6		7	277		9			
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00			
lourly Flow Rate, HFR veh/h)	16	280	6		7	277		9			
Percent Heavy Vehicles	10				10						
Median Type				Undivide	ed						
RT Channelized			0					0			
anes	1	1	0		0	1		1			
Configuration	L		TR		LT			R			
Jpstream Signal		0				0					
linor Street		Eastbound	• • · · · · · · · · · · · · · · · · · ·		<u></u>	Westbou	nd				
Novement	ent 7		9		10	11		12			
	L L	т	R			Т		R			
/olume (veh/h)	16	1	19		2			7			
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00			1.00			
lourly Flow Rate, HFR veh/h)	16	1	19		2	1		7			
Percent Heavy Vehicles	10	0	0		10			0			
Percent Grade (%)		0				0					
lared Approach		N				N					
Storage		0	1			0					
RT Channelized			0					0			
anes	0	1	0		0	1		0			
Configuration		LTR				LTR					
elay, Queue Length, a	and Level of Se										
pproach	Northbound	Southbound		Westbour			Eastbound	_			
lovement	1	4	7	8	9	10	11	12			
ane Configuration		LT	1	LTR			LTR	12			
								·			
(veh/h)	16	7		10			36				
(m) (veh/h)	1232	1232		586			523				
/c	0.01	0.01		0.02			0.07				
5% queue length	0.04	0.02		0.05			0.22				
control Delay (s/veh)	8.0	7.9		11.2			12.4				
OS	A	A		В			В	1			
pproach Delay (s/veh)				11.2		<u> </u>	12.4	-			
pproach LOS							 				
pp:040/1200				<u> </u>			<u> </u>				

HCS+TM Version 5.6

Generated: 7/13/2012 2:52 PM

	CONTROL SUMMARY									
General Information	1		Site Ir	forma	tion					
Analyst	C. Clouse	}	Interse	ction		Lovers (R	Lovers (Rd 140) at Proj Drivi			
Agency/Co.	Tul. Co. (Compost	Jurisdi	ction		Tulare County				
Date Performed	7/12/2012		Analys	is Year		2035 WIT	2035 WITHOUT Project			
Analysis Time Period	PM Peak									
Project Description 12	-1273									
East/West Street: Proje			North/South Street: Lovers Lane							
Intersection Orientation:	North-South		Study Period (hrs): 1.00							
Vehicle Volumes ar	nd Adiustme	nts			and the second					
Major Street	_	Northbound				Southbou	nd			
Movement	1	2	3		4	5		6		
	L	T	R		L	T		R		
Volume (veh/h)	12	309	7		8	248				
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00		
Hourly Flow Rate, HFR (veh/h)	12	309	7		8	248		3		
Percent Heavy Vehicles	10					—				
Median Type				Undivia	led					
RT Channelized			0	0				0		
Lanes	1	1	0		0	1		1		
Configuration	L		TR		LT			R		
Upstream Signal		0				0				
Minor Street		Eastbound				Westbou	nd			
Movement	7	8	9		10	11		12		
	L	Τ	R		Ł	Т		R		
Volume (veh/h)	18	2	18		1	9		5		
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00		
Hourly Flow Rate, HFR (veh/h)	18	2	18		1	9		5		
Percent Heavy Vehicles	10	0	0		10	0		0		
Percent Grade (%)		0				0		_		
Flared Approach		N				N				
Storage		0				0				
RT Channelized			0					0		
Lanes	0	1	0		0	1		0		
Configuration		LTR				LTR		-		
Delay, Queue Length, a	nd Level of Se									
Approach	Northbound	Southbound	1	Westbou	ind	4	Eastbound			
Movement	1	4	7	8	9	10	11	12		
Lane Configuration	Ĺ	4	,	LTR			LTR			
		8		15			38			
v (veh/h)										
C (m) (veh/h)	1269	1200		477			509			
v/c	0.01	0.01		0.03			0.07			
95% queue length	0.03	0.02		0.10			0.24			
Control Delay (s/veh)	7.9	8.0		12.8			12.6			
LOS	A			В			В			
-00										
Approach Delay (s/veh)				12.8		-	12.6			

HCS+TM Version 5.6 Generated: 7/13/2012 2:53 PM

		O-WAY STOP									
General Information	n		Site Ir	nformat	ion						
Analyst	C. Clouse	3	Interse			Lovers (Rd 140)at Ave 248					
Agency/Co.	Tul. Co. (Jurisdie			Tulare County					
Date Performed	7/12/2012		Analysis Year 2035 WITHOUT Project								
Analysis Time Period	AM Peak										
	-1273										
East/West Street: Ave.			North/South Street: Lovers Lane								
Intersection Orientation:	North-South		Study Period (hrs): 1.00								
Vehicle Volumes ar	nd Adjustme	nts		_							
Major Street		Northbound				Southbou	nd				
Movement	1	2	3		4	5		6			
	Ĺ	T		R L		<u> </u>		R			
Volume (veh/h)	31	238	23		27	230		37			
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1.00			
Hourly Flow Rate, HFR (veh/h)	31	238	23		27	230		37			
Percent Heavy Vehicles	10			10							
Median Type				Undivide	ed		<u> </u>				
RT Channelized			· 0					0			
Lanes	0	1	0		0	1		0			
Configuration	LTR				LTR						
Upstream Signal		0				0					
Minor Street		Eastbound				Westbou	nd				
Movement	7	8	9		10	11		12			
	L	Т	R		L	1		R			
Volume (veh/h)	31	3	26		14	2		17			
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00	1.00		1,00			
Hourly Flow Rate, HFR (veh/h)	31	3	26		14	2		17			
Percent Heavy Vehicles	10	0	0		10	0		0			
Percent Grade (%)		0				0					
Flared Approach		N				N					
Storage		0				0					
RT Channelized			0			1		0			
Lanes	0	1	0		0	1		0			
Configuration		LTR				LTR		-			
Delay, Queue Length, a	nd Level of Se				-						
Approach	Northbound	Southbound		Westbour	nd	1	Eastbound				
Novement	1	4	7	8	9	10	11	12			
		LTR	· · · ·	LTR			LTR				
Lane Configuration	LTR				_						
/ (veh/h)	31	27		33			60				
C (m) (veh/h)	1252	1258		498			476				
//c	0.02	0.02		0.07			0.13				
95% queue length	0.08	0.07		0.21			0.43				
Control Delay (s/veh)	7.9	7.9		12.7			13.7				
LOS	A	A		В			В	1			
Approach Delay (s/veh)				12.7		13.7					
Abbroach Delav (s/ven) i				B							

HCS+TM Version 5.6

Generated: 7/13/2012 2:55 PM

General Information	n		Site Information								
							Laurace (D	d 140) at	110 240		
Analyst	C. Clouse Tul. Co. C		Interse				Lovers (Rd 140)at Ave 248 Tulare County				
Agency/Co. Date Performed	7/12/2012			Analysis Year				2035 WITHOUT Project			
Analysis Time Period	PM Peak		Allalys	15 1 0 41			2000 0011		OJECI		
Project Description 12											
East/West Street: Ave.			North/S	outh St	troof	· Lovers I	200				
ntersection Orientation:			North/South Street: Lovers Lane Study Period (hrs): 1.00								
		4.0	lotady	enedit	<u> </u>	1.00					
Vehicle Volumes ar	na Adjustme			r-			Southbou				
Major Street	1	Northbound	3			1	5		6		
viovement	<u></u>	- <u>2</u> T	R		4		т				
/olume (veh/h)	28	267	26			29	204		32		
Peak-Hour Factor, PHF	1.00	1.00	1.00	!-		1.00	1.00		1.00		
Hourly Flow Rate, HFR											
veh/h)	28	267	26			29	204		32		
Percent Heavy Vehicles	10					10					
Median Type				Undivided							
RT Channelized			0						0		
anes	0	1	0			0	1		0		
Configuration	LTR					LTR					
Upstream Signal	-	0					0	i_			
Winor Street		Eastbound					Westbour	nd			
Novement	7	8	9			10	11		12		
			R			Ĺ	Т		R		
/olume (veh/h)	38	3	26			11	2		16		
Peak-Hour Factor, PHF	1.00	1.00	1.00		1.00		1.00		1.00		
Hourly Flow Rate, HFR	38	3	26		11		2		16		
Percent Heavy Vehicles	10	0	0		10		0		0		
Percent Grade (%)		0					0				
Flared Approach		N					N				
Storage		0					0				
RT Channelized			0						0		
Lanes	0	1	0			0	1		0		
Configuration		LTR					LTR		<u> </u>		
Delay, Queue Length, a	I avai of So										
Approach	Northbound	Southbound		Westbo	und			Eastboun			
Novement			7	8	Junu	9	10	11	12		
	1	4	/		,	3	- 10		12		
_ane Configuration	LTR	LTR		LTR				LTR			
/ (veh/h)	28	29		29				67			
C (m) (veh/h)	1286	1224		507				464			
//c	0.02	0.02		0.06	ĵ			0.14			
95% queue length	0.07	0.07		0.18	3			0.51			
Control Delay (s/veh)	7.9	8.0		12.5	5			14.1			
_OS	A	A		В				В			
Approach Delay (s/veh)				12.5	5			14.1			
Approach LOS								<u></u>			
				<u> </u>				Generated: 7/13/2012 2:5			

-

HCS+[™] Version 5.6

Generaled: 7/13/2012 2:57 PM

APPENDIX E

2035 WITH THE PROJECT CONDITIONS

INTERSECTION LEVELS OF SERVICE CALCULATIONS

	∕		7	4	-	×.	•	†	/	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SSR
Lane Configurations	ሻ	<u>†</u> †	1	 ۲	**	1	*	1	1	٢	•	7
Volume (vph)	199	831	139	111	786	168	40	8	34	146	24	174
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util Factor	1.00	0.95	1.00	1.00	0.95	1 00	1.00	1.00	1.00	1.00	1.00	1 00
Frt			0.850			0.850			0.850			0.850
Fit Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	3539	1583	1770	3539	1583	1770	1863	1583	1770	1863	1583
FIt Permitted	0.277			0.256			0.740			0.752		
Satd. Flow (perm)	516	3539	1583	477	3539	1583	1378	1863	1583	1401	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			151			183			37			168
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		2903			3161			2528			1984	
Travel Time (s)		66.0			71.8			57.5			45.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	216	903	151	121	854	183	43	9	37	159	26	189
Shared Lane Traffic (%)	210	000	101	141	00,	100	10	v	0,	100	20	195
Lane Group Flow (vph)	216	903	151	121	854	183	43	9	37	159	26	189
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
	Left	Left		Left	Left	Right	Left	Left	Right	Left	Left	
Lane Alignment	Len	12	Right	Leit	12	rugin	Leit	12	rugin	Lon	12	Right
Median Width(ft)					0			0			0	
Link Offset(ff)		0			16			16				
Crosswalk Width(ft)		16			10			10			16	
Two way Left Turn Lane	4.00	4.00	1.00	4.00	1.00	4.00	4.00	4.00	4.00	1.00	4.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	Real Property	9	15		9	15		9	15		9
Number of Detectors	1	1	1	1	1	1	1	1	1	1	1	1
Detector Template		1										
Leading Detector (ft)	50	50	50	50	50	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Position(ft)	0	0	0	0	0	0	0	0	0	0	0	0
Detector 1 Size(ft)	50	50	50	50	50	50	50	50	50	50	50	50
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm		Perm	Perm		Perm	Perm		Perm	Perm		Perm
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Detector Phase	4	4	4	.8	8	8	2	2	2	6	6	6
Switch Phase												
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (s)	40.0	40.0	40.0	40.0	40.0	40.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (%)	66.7%	66.7%	66.7%	66.7%	66.7%	66.7%	33.3%	33.3%	33.3%	33.3%	33.3%	33.3%
Maximum Green (s)	36.0	36.0	36.0	36.0	36.0	36.0	16.0	16.0	16.0	16.0	16.0	16.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.0	0.5	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0

SR 137 at Lovers Ln (Rd 140) 12:00 pm 7/12/2012 2012 %user_name%

Synchro 7 - Report Page 1 March 5, 2013

Ms. Linda Novick Harvest Power 6943 N. Golden State Blvd. Fresno, CA 93722

Dear Ms. Novick,

We have reviewed the administrative draft sections of the EIR that pertain to traffic and the two traffic impact studies prepared by TPG Consulting for the Harvest Power project in Tulare County. That review has led to the following conclusions.

The original Traffic Impact Study was prepared in July 2012 and evaluated the increase in the site's permitted processing tonnage from 86,000 tons per year to 216,000 tons per year. That evaluation assumed the following trip generation profile for the additional activities associated with the expansion of the existing operation. These were estimated new trips to be generated by the expanded activities.

85 additional trucks per day from the delivery of the debris 10 additional trucks per day from the material generated by the digester 21 additional trucks per day from the removal of the material <u>4 additional trucks per day from the existing CNG fueling facility</u> 120 additional trucks per day <u>x 2 trips per truck (entering and exiting)</u> 240 additional truck trips per day <u>9 employee trips per day</u> = 3 new employees x 3 trips per day 249 new project trips per day <u>+13 hours of operation per day</u> 19 trips per hour

This trip generation profile is incorporated into the administrative draft of the EIR. This represents a conservative approach to the estimation of the new trips that will be added as a result of the expansion of the Project.

After consultation with the Applicant, a second Traffic Impact Study was prepared in November 2012 to reflect a more realistic level of new trips that can be expected from the site with the expansion of the Harvest Power Project.

35 additional trucks per day <u>x 2 trips per truck (entering and exiting)</u> 70 additional truck trips per day

Visalia Office

222 N. Garden Street Suite 100 Visalia, CA 93291 Tel 559.739.8072 Fax 559.739.8377

Colorado Office

1950 W. Littleton Blvd Suite 101 Littleton, CO 80120 Tel 303.797.0989 Fax 303.797.0987

<u>9 employee trips per day</u> = 3 new employees x 3 trips per day 79 new project trips per day ÷13 hours of operation per day 6 trips per hour

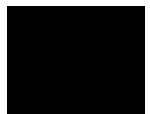
While this approach may more closely reflect the actual traffic that will be generated by the Project, it was not used in the EIR so as to overstate the potential impacts from the Project.

The key for assessing impacts is the number of peak hour trips being added to the road network. With the more conservative approach, only 19 new peak hour trips are added, while with the more realistic approach, a mere 6 additional trips will be added. Neither the 19 or the smaller 6 trips represents significant increases to the existing or future traffic stream.

In either case, the conservative approach or the more realistic approach, level of service analysis was completed on the study intersections. Both analyses concluded that the resulting short term and long term impacts from the Harvest Project would not result in any significant level of service impacts. That is all study intersections or evaluated movements were projected to operate well above the threshold of significance established by both the County of Tulare (Lovers Lane) or Caltrans (State Highway 137).

As part of the Staff review and ADEIR preparation, the Applicant has determined that for regulatory purposes and to reflect the fluctuations in the day to day operation, the maximum number of new trucks would not exceed 110 per day. Given that the July 2012 Traffic Impact Study was based on an assumed 120 trucks per day, the current estimated Project truck trips falls below the conservative methodology included in the ADEIR.

110 additional trucks per day <u>x 2 trips per truck (entering and exiting)</u>
220 additional truck trips per day <u>9 employee trips per day</u> = 3 new employees x 3 trips per day
229 new project trips per day ÷13 hours of operation per day
18 trips per hour


This very slight reduction in trucks per day yield a drop from 19 new peak hour trips to 18 new peak hour trips to the Project site. Therefore, it can be reasonably concluded that since the overall peak hour trips is only 18 additional trips, the resulting levels of service at the study intersections will also operate well above the threshold of significance established by both the County of Tulare or Caltrans.

Visalia Office

222 N. Garden Street Suite 100 Visalia, CA 93291 Tel 559.739.8072 Fax 559.739.8377

Colorado Office

1950 W. Littleton Blvd Suite 101 Littleton, CO 80120 Tel 303.797.0989 Fax 303.797.0987

Thank you for the opportunity to assist with this project. Please feel free to contact me if you have any questions or need any additional information.

Sincerely,

Charles Clouse, AICP, PTP Principal

T:\Net-data\Projects\12-1273 Tul Co Compost TIS\Correspondence\Admin DEIR letter.doc

Visalia Office

222 N. Garden Street Suite 100 Visalia, CA 93291 Tel 559.739.8072 Fax 559.739.8377

Colorado Office 1950 W. Littleton Blvd

1950 W. Littleton Blv Suite 101 Littleton, CO 80120 Tel 303.797.0989 Fax 303.797.0987